Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Nutr ; 43(1): 176-186, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061271

RESUMEN

BACKGROUND: Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS: In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS: We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION: This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov; ID:NCT03555019.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Embarazo , Lactante , Recién Nacido , Humanos , Femenino , Ácidos Docosahexaenoicos , Imagen de Difusión Tensora/métodos , Placenta , Sustancia Blanca/diagnóstico por imagen , Suplementos Dietéticos , Ácido Araquidónico , Encéfalo/diagnóstico por imagen
2.
Clin Nutr ; 42(12): 2311-2319, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37856920

RESUMEN

BACKGROUND & AIMS: A balanced supply of arachidonic acid (ARA) and docosahexaenoic acid (DHA) may be crucial for quality of growth in preterm infants. This secondary analysis of a randomized controlled trial aimed to determine the effect of enhanced ARA and DHA supplementation on growth and body composition in infants born before 29 weeks of gestation. Furthermore, we aimed to study associations between human milk feeding, growth patterns and body composition. METHODS: The ImNuT-trial randomized 121 infants to receive a daily supplement with medium chain triglycerides (control) or 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) from the second day of life until 36 weeks postmenstrual age. Growth and body composition were evaluated up to 3 months corrected age. RESULTS: The ARA:DHA group showed better linear growth from birth to term equivalent age compared to the control group; mean difference in z score change from birth for length was 0.74 ([95% CI, 0.17-1.3]; p = 0.010). There were no differences in growth and body composition outcomes at 3 months corrected age between the groups. An increase in z score for weight after 36 weeks postmenstrual age and breastfeeding at 3 months corrected age were the strongest positive predictors of fat mass% at 3 months corrected age (both, p < 0.001). CONCLUSION: Early enhanced supplementation of ARA and DHA may be beneficial with respect to somatic growth in very preterm infants. CLINICAL TRIAL REGISTRATION: The trial has been registered on www. CLINICALTRIALS: gov, ID: NCT03555019.


Asunto(s)
Ácidos Docosahexaenoicos , Recien Nacido Prematuro , Lactante , Recién Nacido , Humanos , Suplementos Dietéticos , Ácido Araquidónico , Leche Humana
3.
BMC Nutr ; 9(1): 10, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631895

RESUMEN

BACKGROUND: Epidemiological studies often investigate amino acids and their metabolites as biomarkers, but do not always consistently use fasting or non-fasting blood samples, or may lack information on the prandial status of the study participants. Since little information is available on the effects of the prandial status on many biomarkers, and since blood is typically sampled early in the day with participants in a fasting state or after having consumed a light meal in many trials, the main purpose of this study was to investigate the short-term effects of a light breakfast on serum concentrations of amino acids and related metabolites. METHODS: Blood was collected from sixty-three healthy adults (36 women) in the fasting state and at set times for 120 min after intake of a light breakfast with low protein content (14 g protein, 2218 kJ). Relative changes in serum biomarker concentrations from fasting to postprandial serum concentrations were tested using T test. RESULTS: The serum concentrations of 13 of the 20 measured amino acids were significantly changed 60 min following breakfast intake, with the most marked effects seen as increases in alanine (34%) and proline (45%) concentrations. The response did not reflect the amino acid composition of the breakfast. The concentrations of seven kynurenine metabolites were significantly decreased after breakfast. CONCLUSION: Consumption of a light breakfast affected serum concentrations of several amino acids and related metabolites, underlining the importance of having information regarding the participants' prandial state at the time of blood sampling in studies including these biomarkers. TRIAL REGISTRATION: This trial was registered at clinicaltrials.gov as NCT02350595 (registered January 2015).

4.
Clin Nutr ESPEN ; 53: 251-259, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657920

RESUMEN

BACKGROUND & AIMS: Nutrition is a cornerstone of postnatal care to prevent compromised growth and support short- and long-term health outcomes in preterm infants. We aimed to evaluate nutritional intakes and growth among infants <29 weeks gestation after implementation of a standardized feeding protocol. METHODS: This is an observational cohort secondary analysis of data from the ImNuT study (Immature, Nutrition Therapy, NCT03555019). To reduce variations in nutritional practice and ensure accommodation to current guidelines, we developed a standardized feeding protocol. Detailed information on actual nutritional intakes, growth and biochemistry was prospectively collected and assessed from birth to 36 weeks postmenstrual age (PMA). RESULTS: Median (range) gestational age and birth weight were 26+6 (22+6-28+6) weeks and 798 (444-1485) g. Energy and macronutrient intakes progressively increased from birth through transition to exclusive enteral feeds. Parenteral nutrition was weaned at median (IQR) day 11 (9, 14) when nutritional requirements were met by exclusively enteral feeds. Infants exhibited a median (IQR) weight loss of 7.8% (5.7, 11.6) and regained birth weight by day 8 (7, 11). Average velocity in weight, length and head circumference from birth to 36 weeks PMA were in accordance with target growth rates; median (IQR) 15.8 (14.7, 17.7) g/kg/d, 1.1 (0.98, 1.3) cm/week and 0.82 (0.83, 0.89) cm/week. At 36 weeks PMA, only 3% of infants exhibited moderate growth faltering (decline in weigh-for-age z score >1.2 from birth), and none severe. CONCLUSIONS: In infants <29 weeks gestation, the standardized feeding protocol was well tolerated. Nutrient intakes and growth were close to recommendations.


Asunto(s)
Ingestión de Alimentos , Recien Nacido Prematuro , Lactante , Recién Nacido , Humanos , Embarazo , Femenino , Edad Gestacional , Peso al Nacer , Necesidades Nutricionales , Estudios Observacionales como Asunto
5.
Nutrients ; 15(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36678312

RESUMEN

Vitamin A has a key role in lung development and its deficiency is associated with an increased risk of bronchopulmonary dysplasia. This secondary cohort analysis of the ImNuT trial (Immature, Nutrition Therapy NCT03555019) aimed to (1) explore vitamin A status in preterm infants <29 weeks gestation and (2) assess the influence of inflammation and postnatal dexamethasone exposure on vitamin A concentrations in blood. We report detailed information on vitamin A biochemistry, vitamin A intake, markers of inflammation and dexamethasone exposure. After four weeks of age, infants exposed to dexamethasone (n = 39) showed higher vitamin A concentrations compared to unexposed infants (n = 41); median (IQR) retinol was 1.0 (0.74, 1.5) vs. 0.56 (0.41, 0.74) µmol/L, p < 0.001. Pretreatment retinol concentrations were lower in the dexamethasone group compared to non-exposed infants (p < 0.001); 88% vs. 60% of the infants were considered deficient in vitamin A (retinol < 0.7 µmol/L) at one week of age. Small size for gestational age, mechanical ventilation and elevated levels of interleukin-6 were factors negatively associated with first-week retinol concentrations. In conclusion, preterm infants <29 weeks gestation are at risk of vitamin A deficiency despite intakes that accommodate current recommendations. The presence of inflammation and dexamethasone exposure should be considered when interpreting vitamin A status.


Asunto(s)
Recien Nacido Prematuro , Vitamina A , Lactante , Recién Nacido , Humanos , Glucocorticoides/efectos adversos , Inflamación/inducido químicamente , Dexametasona/efectos adversos
6.
Clin Nutr ; 42(1): 22-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473425

RESUMEN

BACKGROUND & AIMS: Studies have suggested that supplementation with docosahexaenoic acid (DHA) to preterm infants might be associated with an increased risk of bronchopulmonary dysplasia (BPD). Our aim was to investigate the effect of enteral supplementation with arachidonic acid (ARA) and DHA on short-term respiratory outcomes and neonatal morbidities in very preterm infants. METHODS: This is a secondary analysis of data from the ImNuT (Immature, Nutrition Therapy) study, a randomized double blind clinical trial. Infants with gestational age less than 29 weeks were randomized to receive a daily enteral supplement with ARA 100 mg/kg and DHA 50 mg/kg (intervention) or medium chain triglycerides (MCT) oil (control), from second day of life to 36 weeks postmenstrual age. Study outcomes included duration of respiratory support, incidence of BPD and other major morbidities associated with preterm birth. RESULTS: 120 infants with mean (SD) gestational age 26.4 (1.7) weeks were randomized and allocated to either the intervention or control group. Supplementation with ARA and DHA led to a significant reduction in number of days with respiratory support (mean (95% CI) 63.4 (56.6-71.3) vs 80.6 (72.4-88.8); p = 0.03) and a lower oxygen demand (FiO2) (mean (95% CI) 0.26 (0.25-0.28) vs 0.29 (0.27-0.30); p = 0.03) compared to control treatment. There were no clinically important differences in incidence of BPD and other major morbidities between the treatment groups. CONCLUSIONS: Supplementation with ARA and DHA to preterm infants was safe and might have a beneficial effect on respiratory outcomes. CLINICAL TRIAL REGISTRATION: The trial has been registered in www. CLINICALTRIALS: gov, ID: NCT03555019.


Asunto(s)
Displasia Broncopulmonar , Nacimiento Prematuro , Femenino , Recién Nacido , Humanos , Lactante , Adulto , Recien Nacido Prematuro , Ácidos Docosahexaenoicos/uso terapéutico , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/prevención & control , Ácido Araquidónico , Suplementos Dietéticos
7.
Br J Nutr ; : 1-10, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35899805

RESUMEN

The transfer of one-carbon units between molecules in metabolic pathways is essential for maintaining cellular homeostasis, but little is known about whether the circulating concentrations of metabolites involved in the one-carbon metabolism are affected by the prandial status. Epidemiological studies do not always consistently use fasting or non-fasting blood samples or may lack information on the prandial status of the study participants. Therefore, the main aim of the present study was to investigate the effects of a light breakfast on serum concentrations of selected metabolites and B-vitamins related to the one-carbon metabolism; i.e. the methionine-homocysteine cycle, the folate cycle, the choline oxidation pathway and the transsulfuration pathway. Sixty-three healthy adults (thirty-six women) with BMI ≥ 27 kg/m2 were included in the study. Blood was collected in the fasting state and 60 and 120 min after intake of a standardised breakfast consisting of white bread, margarine, white cheese, strawberry jam and orange juice (2218 kJ). The meal contained low amounts of choline, betaine, serine and vitamins B2, B3, B6, B9 and B12. Serum concentrations of total homocysteine, total cysteine, flavin mononucleotide, nicotinamide and pyridoxal 5'-phosphate were significantly decreased, and concentrations of choline, betaine, dimethylglycine, sarcosine, cystathionine and folate were significantly increased following breakfast intake (P < 0·05). Our findings demonstrate that the intake of a light breakfast with low nutrient content affected serum concentrations of several metabolites and B-vitamins related to the one-carbon metabolism.

8.
Eur J Nutr ; 60(6): 3237-3248, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33576844

RESUMEN

PURPOSE: Primarily, to investigate the effect of high intake of cod (lean fish) or salmon (fatty fish) on serum concentration of total neopterin, a marker of cellular immune activation that is associated with cardiovascular disease. Second, to investigate effects of high cod/salmon intake on antioxidant vitamins and elements essential for activity of antioxidant enzymes. METHODS: In this randomised clinical trial, 63 participants with overweight/obesity consumed 750 g/week of either Atlantic cod (N = 22) or Atlantic salmon (N = 22) or were instructed to continue their normal eating habits but avoid fish intake (Control group, N = 19) for 8 weeks. Food intake was recorded, and fasting serum were collected at baseline and endpoint. RESULTS: Serum total neopterin concentration was reduced in the Cod group (median change - 2.65 (25th, 75th percentiles - 3.68, - 0.45) nmol/l, P = 0.018) but not in the Salmon group (median change 0.00 (25th, 75th percentiles - 4.15, 3.05) nmol/l, P = 0.59) when compared with the Control group after 8 weeks. The estimated daily intake of selenium, iron, magnesium and zinc were similar between all groups. Increased serum concentration of selenium was observed only after cod intake when compared to the Control group (P = 0.017). Changes in serum concentrations of copper, iron, magnesium, all-trans retinol, α-tocopherol and γ-tocopherol were similar between the groups. CONCLUSION: A high intake of cod, but not of salmon, lowered serum total neopterin concentration when compared to the Control group. CLINICAL TRIAL REGISTRATION: This trial was registered at clinicaltrials.gov as NCT02350595.


Asunto(s)
Salmo salar , Animales , Humanos , Neopterin , Obesidad , Sobrepeso , Alimentos Marinos
9.
Eur J Nutr ; 60(4): 2231-2248, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33108521

RESUMEN

PURPOSE: To explore whether high intake of cod or salmon would affect gut microbiota profile, faecal output and serum concentrations of lipids and bile acids. METHODS: Seventy-six adults with overweight/obesity with no reported gastrointestinal disease were randomly assigned to consume 750 g/week of either cod or salmon, or to avoid fish intake (Control group) for 8 weeks. Fifteen participants from each group were randomly selected for 72 h faeces collection at baseline and end point for gut microbiota profile analyses using 54 bacterial DNA probes. Food intake was registered, and fasting serum and morning urine were collected at baseline and end point. RESULTS: Sixty-five participants were included in serum and urine analyses, and gut microbiota profile was analysed for 33 participants. Principal component analysis of gut microbiota showed an almost complete separation of the Salmon group from the Control group, with lower counts for bacteria in the Bacteroidetes phylum and the Clostridiales order of the Firmicutes phyla, and higher counts for bacteria in the Selenomonadales order of the Firmicutes phylum. The Cod group showed greater similarity to the Salmon group than to the Control group. Intake of fibres, proteins, fats and carbohydrates, faecal daily mass and output of fat, cholesterol and total bile acids, and serum concentrations of cholesterol, triacylglycerols, non-esterified fatty acids and total bile acids were not altered in the experimental groups. CONCLUSION: A high intake of cod or salmon fillet modulated gut microbiota but did not affect faecal output or serum concentrations of lipids and total bile acids. CLINICAL TRIAL REGISTRATION: This trial was registered at clinicaltrials.gov as NCT02350595.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Animales , Ácidos y Sales Biliares , Heces , Humanos , Sobrepeso , Salmón , Triglicéridos
10.
Eur J Nutr ; 59(5): 2249-2259, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31401679

RESUMEN

PURPOSE: To identify biomarkers to assess participants' compliance in an intervention study with high intake of cod or salmon, compared to a fish-free diet. METHODS: In this randomised clinical trial, 62 healthy overweight/obese participants consumed 750 g/week of either cod (N = 21) or salmon (N = 22) across 5 weekly dinners, or were instructed to continue their normal eating habits but avoid fish intake (Control group, N = 19) for 8 weeks. RESULTS: After cod intake, serum concentrations of trimethylamine N-oxide (TMAO, p = 0.0043), creatine (p = 0.024) and 1-methylhistidine (1-MeHis, p = 0.014), and urine concentrations (relative to creatinine) of TMAO (p = 2.8 × 10-5), creatine (p = 8.3 × 10-4) and 1-MeHis (p = 0.016) were increased when compared to Control group. After salmon intake, serum concentrations of 1-MeHis (p = 2.0 × 10-6) and creatine (p = 6.1 × 10-4), and urine concentrations (relative to creatinine) of 1-MeHis (p = 4.2 × 10-6) and creatine (p = 4.0 × 10-5) were increased when compared to Control group. Serum and urine concentrations of TMAO were more increased following cod intake compared to salmon intake (p = 0.028 and 2.9 × 10-4, respectively), and serum and urine 1-MeHis concentrations were more increased after salmon intake compared to cod intake (p = 8.7 × 10-5 and 1.2 × 10-4, respectively). Cod and salmon intake did not affect serum and urine concentrations of 3-methylhistidine, and only marginally affected concentrations of free amino acids and amino acid metabolites. CONCLUSION: TMAO measured in serum or urine is a potential biomarker of cod intake, and 1-MeHis measured in serum or urine is a potential biomarker of salmon intake.


Asunto(s)
Creatina , Salmón , Adulto , Animales , Biomarcadores , Humanos , Metilaminas , Metilhistidinas , Obesidad , Sobrepeso
11.
Br J Nutr ; 123(4): 419-427, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31760958

RESUMEN

Low serum concentrations of several vitamins have been linked to increased risk of diseases including insulin resistance and type 2 diabetes (T2D). Fish is a good source of several vitamins, and the prevalence of T2D is low in populations with high fish intake. The aim of the present study was to investigate the effects of high fish intake on vitamins in serum from adults in autumn in South-Western Norway at 60° north latitude. In this randomised clinical trial, sixty-three healthy participants with overweight/obesity consumed 750 g/week of either cod (n 22) or salmon (n 22) as five weekly dinners or were instructed to continue their normal eating habits but avoid fish intake (Control group, n 19) for 8 weeks. The estimated vitamin D intake was significantly increased in the Salmon group when compared with the Cod group (P = 6·3 × 10-4) and with the Control group (P = 3·5 × 10-6), with no differences between groups for estimated intake of vitamins A, B1, B2, B3, B6, B9, C and E. Serum 25-hydroxyvitamin D3 concentration was decreased in all groups after 8 weeks; however, the reduction in the Salmon group was significantly smaller compared with the Cod group (P = 0·013) and the Control group (P = 0·0060). Cod and salmon intake did not affect serum concentrations of the other measured vitamins. The findings suggest that 750 g/week of salmon was not sufficient to prevent a decrease in serum 25-hydroxyvitamin D3 in autumn in South-Western Norway in adults with overweight/obesity.


Asunto(s)
Dieta/métodos , Conducta Alimentaria/fisiología , Salmón , Alimentos Marinos , Deficiencia de Vitamina D/prevención & control , Adolescente , Adulto , Animales , Calcifediol/sangre , Femenino , Geografía , Humanos , Masculino , Comidas , Persona de Mediana Edad , Noruega , Estado Nutricional , Estaciones del Año , Adulto Joven
12.
Br J Nutr ; 117(10): 1368-1378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28606215

RESUMEN

The prevalence of type 2 diabetes (T2D) is low in populations with a high fish intake; however prospective studies with fish intake have shown positive, negative or no association between fish intake and the risk for T2D. The aim of this study was to investigate the effects of high intake of lean or fatty fish on glucose tolerance, leucocyte membrane fatty acid composition and leucocyte function in overweight/obese adults. In this randomised clinical trial, sixty-eight healthy overweight/obese participants consumed 750 g/week of either lean or fatty fish as dinners, or were instructed to continue their normal eating habits but to avoid fish intake (control group), for 8 weeks. Energy and macronutrient intake and physical activity were not changed within the groups during the study period. High intake of fatty fish, but not of lean fish, significantly improved glucose regulation 120 min postprandially (P=0·012), but did not affect fasting glucose concentration. A smaller increase in fasting to 120 min postprandial insulin C-peptide concentration was seen after fatty fish intake (P=0·012). Lean fish increased the DHA content in leucocyte membranes (P=0·010), and fatty fish increased the total content of n-3 PUFA (P=0·00016) and reduced the content of n-6 PUFA (P=0·00057) in leucocyte membranes. Lean and fatty fish intake did not affect phagocytosis of bacteria ex vivo. The findings suggest that high intake of fatty fish, but not of lean fish, beneficially affected postprandial glucose regulation in overweight/obese adults, and may therefore prevent or delay the development of T2D in this population.


Asunto(s)
Glucemia , Ácidos Grasos Omega-3/metabolismo , Peces , Hiperglucemia , Leucocitos/metabolismo , Sobrepeso , Adulto , Animales , Biomarcadores , Grasas de la Dieta , Femenino , Análisis de los Alimentos , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad
13.
Br J Nutr ; 116(4): 648-57, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27363518

RESUMEN

The aim of the present study was to examine whether high intake of lean or fatty fish (cod and farmed salmon, respectively) by healthy, normal-weight adults would affect risk factors of type 2 diabetes and CVD when compared with lean meat (chicken). More knowledge is needed concerning the potential health effects of high fish intake (>300 g/week) in normal-weight adults. In this randomised clinical trial, thirty-eight young, healthy, normal-weight participants consumed 750 g/week of lean or fatty fish or lean meat (as control) for 4 weeks at dinner according to provided recipes to ensure similar ways of preparations and choices of side dishes between the groups. Energy and macronutrient intakes at baseline and end point were similar in all groups, and there were no changes in energy and macronutrient intakes within any of the groups during the course of the study. High intake of fatty fish, but not lean fish, significantly reduced TAG and increased HDL-cholesterol concentrations in fasting serum when compared with lean meat intake. When compared with lean fish intake, fatty fish intake increased serum HDL-cholesterol. No differences were observed between lean fish, fatty fish and lean meat groups regarding fasting and postprandial glucose regulation. These findings suggest that high intake of fatty fish, but not of lean fish, could beneficially affect serum concentrations of TAG and HDL-cholesterol, which are CVD risk factors, in healthy, normal-weight adults, when compared with high intake of lean meat.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , HDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/prevención & control , Dieta/métodos , Alimentos Marinos , Triglicéridos/sangre , Adulto , Animales , Enfermedades Cardiovasculares/etiología , Pollos , Diabetes Mellitus Tipo 2/etiología , Grasas de la Dieta , Ingestión de Alimentos , Ayuno/sangre , Femenino , Gadus morhua , Voluntarios Sanos , Humanos , Masculino , Periodo Posprandial , Aves de Corral , Factores de Riesgo , Salmón , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...